000 | 08880cam a22003494a 4500 | ||
---|---|---|---|
001 | 16130306 | ||
003 | OSt | ||
005 | 20220920163127.0 | ||
007 | co |g||||||||| | ||
008 | 100311s2010 njua b 001 0 eng | ||
010 | _a 2010010530 | ||
020 | _a9780470872529 (hardback) | ||
020 | _a0470872527 (hardback) | ||
035 | _a(OCoLC)ocn555629660 | ||
040 |
_aDLC _cKsTU _dYDX _dBTCTA _dYDXCP _dCDX _dCNARC _dRCE _dFUG _dDLC |
||
042 | _apcc | ||
050 | 0 | 0 |
_aTP156.F65 _b.fan 2010 |
082 | 0 | 0 |
_a621.402/3 _222 |
100 | 1 | _aFan, Liang-Shih. | |
245 | 1 | 0 |
_aChemical looping systems for fossil energy conversions / _cLiang-Shih Fan. |
260 |
_aHoboken, NJ : _bWiley-AIChE, _cc2010. |
||
300 |
_axiv, 420 p. : _bill. ; _c25 cm. + _e1 CD-ROM (4 3/4 in.) |
||
504 | _aIncludes bibliographical references and indexes. | ||
505 | 0 | 0 |
_g1. _tIntroduction -- _g1.1. _tBackground -- _g1.1.1. _tRenewable Energy -- _g1.1.2. _tFossil Energy Outlook -- _g1.2. _tCoal Combustion -- _g1.2.1. _tEnergy Conversion Efficiency Improvement -- _g1.2.2. _tFlue Gas Pollutant Control Methods -- _g1.3. _tCO2 Capture -- _g1.4. _tCO2 Sequestration -- _g1.5. _tCoal Gasification -- _g1.6. _tChemical Looping Concepts -- _g1.7. _tChemical Looping Processes -- _g1.8. _tOverview of This Book -- _tReferences -- _g2. _tChemical Looping Particles -- _g2.1. _tIntroduction -- _g2.2. _tType I Chemical Looping System -- _g2.2.1. _tGeneral Particle Characteristics -- _g2.2.2. _tThermodynamics and Phase Equilibrium of Metals and Metal Oxides -- _g2.2.3. _tParticle Regeneration with Steam -- _g2.2.4. _tReaction with Oxygen and Heat of Reaction -- _g2.2.5. _tParticle Design Considering Heat of Reaction -- _g2.2.6. _tParticle Preparation and Recyclability -- _g2.2.7. _tParticle Formulation and Effect of Support -- _g2.2.8. _tEffect of Particle Size and Mechanical Strength -- _g2.2.9. _tCarbon and Sulfur Formation Resistance -- _g2.2.10. _tParticle Reaction Mechanism -- _g2.2.11. _tEffect of Reactor Design and Gas-Solid Contact Modes -- _g2.2.12. _tSelection of Primary Metal for Chemical Looping Combustion of Coal -- _g2.3. _tType II Chemical Looping System -- _g2.3.1. _tTypes of Metal Oxide -- _g2.3.2. _tThermodynamics and Phase Equilibrium of Metal Oxide and Metal Carbonate -- _g2.3.3. _tReaction Characteristics of Ca-Based Sorbents for CO2 Capture -- _g2.3.4. _tSynthesis of the High-Reactivity PCC-CaO Sorbent -- _g2.3.5. _tReactivity of Calcium Sorbents -- _g2.3.6. _tRecyclability of Calcium Oxides -- _g2.4. _tConcluding Remarks -- _tReferences -- _g3. _tChemical Looping Combustion -- _g3.1. _tIntroduction -- _g3.2. _tCO2 Capture Strategies for Fossil Fuel Combustion Power Plants -- _g3.2.1. _tPulverized Coal Combustion Power Plants -- _g3.2.2. _tCO2 Capture Strategies -- _g3.3. _tChemical Looping Combustion -- _g3.3.1. _tParticle Reactive Properties and Their Relationship with CLC Operation -- _g3.3.2. _tKey Design and Operational Parameters for a CFB-Based CLC System -- _g3.3.3. _tCLC Reactor System Design -- _g3.3.4. _tGaseous Fuel CLC Systems and Operational Results -- _g3.3.5. _tSolid Fuel CLC Systems and Operational Results -- _g3.4. _tConcluding Remarks -- _tReferences -- _g4. _tChemical Looping Gasification Using Gaseous Fuels -- _g4.1. _tIntroduction -- _g4.2. _tTraditional Coal Gasification Processes -- _g4.2.1. _tElectricity Production---Integrated Gasification Combined Cycle (IGCC) -- _g4.2.2. _tH2 Production -- _g4.2.3. _tLiquid Fuel Production -- _g4.3. _tIron-Based Chemical Looping Processes Using Gaseous Fuels -- _g4.3.1. _tLane Process and Messerschmitt Process -- _g4.3.2. _tU.S. Bureau of Mines Pressurized Fluidized Bed Steam-Iron Process -- _g4.3.3. _tInstitute of Gas Technology Process -- _g4.3.4. _tSyngas Chemical Looping (SCL) Process -- _g4.4. _tDesign, Analysis and Optimization of the Syngas Chemical Looping (SCL) Process -- _g4.4.1. _tThermodynamic Analyses of SCL Reactor Behavior -- _g4.4.2. _tASPEN PLUS Simulation of SCL Reactor Systems -- _g4.4.3. _tSyngas Chemical Looping (SCL) Process Testing -- _g4.5. _tProcess Simulation of the Traditional Gasification Process and the Syngas Chemical Looping Process -- _g4.5.1. _tCommon Assumptions and Model Setup -- _g4.5.2. _tDescription of Various Systems -- _g4.5.3. _tASPEN PLUS Simulation, Results, and Analyses -- _g4.6. _tExample of SCL Applications---A Coal-to-Liquid Configuration -- _g4.6.1. _tProcess Overview -- _g4.6.2. _tMass/Energy Balance and Process Evaluation -- _g4.7. _tCalcium Looping Process Using Gaseous Fuels -- _g4.7.1. _tDescription of the Processes -- _g4.7.2. _tReaction Characteristics of the Processes -- _g4.7.3. _tAnalyses of the Processes -- _g4.7.4. _tEnhanced Coal-to-Liquid (CTL) Process with Sulfur and CO2 Capture -- _g4.8. _tConcluding Remarks -- _tReferences -- _g5. _tChemical Looping Gasification Using Solid Fuels -- _g5.1. _tIntroduction -- _g5.2. _tChemical Looping Gasification Processes Using Calcium-Based Sorbent -- _g5.2.1. _tCO2 Acceptor Process -- _g5.2.2. _tHyPr-Ring Process -- _g5.2.3. _tZero Emission Coal Alliance Process -- _g5.2.4. _tALSTOM Hybrid Combustion-Gasification Process -- _g5.2.5. _tFuel-Flexible Advanced Gasification-Combustion Process -- _g5.2.6. _tGeneral Comments -- _g5.3. _tCoal-Direct Chemical Looping (CDCL) Processes Using Iron-Based Oxygen Carriers -- _g5.3.1. _tCoal-Direct Chemical Looping Process---Configuration I -- _g5.3.2. _tCoal-Direct Chemical Looping Process---Configuration II -- _g5.3.3. _tComments on the Iron-Based Coal-Direct Chemical Looping Process -- _g5.4. _tChallenges to the Coal-Direct Chemical Looping Processes and Strategy for Improvements -- _g5.4.1. _tOxygen-Carrier Particle Reactivity and Char Reaction Enhancement -- _g5.4.2. _tConfigurations and Conversions of the Reducer -- _g5.4.3. _tPerformance of the Oxidizer and the Combustor -- _g5.4.4. _tFate of Pollutants and Ash -- _g5.4.5. _tEnergy Management, Heat Integration, and General Comments -- _g5.5. _tProcess Simulation on the Coal-Direct Chemical Looping Process -- _g5.5.1. _tASPEN Model Setup -- _g5.5.2. _tSimulation Results -- _g5.6. _tConcluding Remarks -- _tReferences -- _g6. _tNovel Applications of Chemical Looping Technologies -- _g6.1. _tIntroduction -- _g6.2. _tHydrogen Storage and Onboard Hydrogen Production -- _g6.2.1. _tCompressed Hydrogen Gas and Liquefied Hydrogen -- _g6.2.2. _tMetal Hydrides -- _g6.2.3. _tBridged Metal-Organic Frameworks -- _g6.2.4. _tCarbon Nanotubes and Graphite Nanofibers -- _g6.2.5. _tOnboard Hydrogen Production via Iron Based Materials -- _g6.3. _tCarbonation-Calcination Reaction (CCR) Process for Carbon Dioxide Capture -- _g6.4. _tChemical Looping Gasification Integrated with Fuel Cells -- _g6.4.1. _tChemical Looping Gasification Integrated with Solid-Oxide Fuel Cells -- _g6.4.2. _tDirect Solid Fuel Cells -- _g6.5. _tEnhanced Steam Methane Reforming -- _g6.6. _tTar Sand Digestion via Steam Generation -- _g6.7. _tLiquid Fuel Production from Chemical Looping Gasification -- _g6.8. _tChemical Looping with Oxygen Uncoupling (CLOU) -- _g6.9. _tConcluding Remarks -- _tReferences. |
520 | _a"This book presents the current carbonaceous fuel conversion technologies based on chemical looping concepts in the context of traditional or conventional technologies. The key features of the chemical looping processes, their ability to generate a sequestration-ready CO2 stream, are thoroughly discussed. Chapter 2 is devoted entirely to the performance of particles in chemical looping technology and covers the subjects of solid particle design, synthesis, properties, and reactive characteristics. The looping processes can be applied for combustion and/or gasification of carbon-based material such as coal, natural gas, petroleum coke, and biomass directly or indirectly for steam, syngas, hydrogen, chemicals, electricity, and liquid fuels production. Details of the energy conversion efficiency and the economics of these looping processes for combustion and gasification applications in contrast to those of the conventional processes are given in Chapters 3, 4, and 5. Finally, Chapter 6 presents additional chemical looping applications that are potentially beneficial, including those for H2 storage and onboard H2 production, CO2 capture in combustion flue gas, power generation using fuel cell, steam-methane reforming, tar sand digestion, and chemicals and liquid fuel production. A CD is appended to this book that contains the chemical looping simulation files and the simulation results based on the ASPEN Plus software for such reactors as gasifier, reducer, oxidizer and combustor, and for such processes as conventional gasification processes, Syngas Chemical Looping Process, Calcium Looping Process, and Carbonation-Calcination Reaction (CCR) Process."--Provided by publisher. | ||
650 | 0 | _aFluidized-bed combustion. | |
650 | 0 |
_aFossil fuels _xCombustion. |
|
650 | 0 | _aEnergy conversion. | |
906 |
_a7 _bcbc _corignew _d1 _eecip _f20 _gy-gencatlg |
||
942 |
_2lcc _cBK _n0 |
||
999 |
_c1761 _d1760 |